Spinal adenosine A2a receptor activation elicits long-lasting phrenic motor facilitation.

نویسندگان

  • Francis J Golder
  • Lavanya Ranganathan
  • Irawan Satriotomo
  • Michael Hoffman
  • Mary Rachael Lovett-Barr
  • Jyoti J Watters
  • Tracy L Baker-Herman
  • Gordon S Mitchell
چکیده

Acute intermittent hypoxia elicits a form of spinal, brain-derived neurotrophic factor (BDNF)-dependent respiratory plasticity known as phrenic long-term facilitation. Ligands that activate G(s)-protein-coupled receptors, such as the adenosine 2a receptor, mimic the effects of neurotrophins in vitro by transactivating their high-affinity receptor tyrosine kinases, the Trk receptors. Thus, we hypothesized that A2a receptor agonists would elicit phrenic long-term facilitation by mimicking the effects of BDNF on TrkB receptors. Here we demonstrate that spinal A2a receptor agonists transactivate TrkB receptors in the rat cervical spinal cord near phrenic motoneurons, thus inducing long-lasting (hours) phrenic motor facilitation. A2a receptor activation increased phosphorylation and new synthesis of an immature TrkB protein, induced TrkB signaling through Akt, and strengthened synaptic pathways to phrenic motoneurons. RNA interference targeting TrkB mRNA demonstrated that new TrkB protein synthesis is necessary for A2a-induced phrenic motor facilitation. A2a receptor activation also increased breathing in unanesthetized rats, and improved breathing in rats with cervical spinal injuries. Thus, small, highly permeable drugs (such as adenosine receptor agonists) that transactivate TrkB receptors may provide an effective therapeutic strategy in the treatment of patients with ventilatory control disorders, such as obstructive sleep apnea, or respiratory insufficiency after spinal injury or during neurodegenerative diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spinal NMDA receptor activation is necessary for de novo, but not the maintenance of, A2a receptor-mediated phrenic motor facilitation.

Adenosine 2a (A2a) receptor agonists elicit persistent increases in phrenic nerve activity by transactivating the neurotrophin receptor, TrkB, near phrenic motoneurons. Our working model proposes that A2a receptor-mediated TrkB receptor activation strengthens glutamatergic synapses onto phrenic motoneurons. Activation of glutamate N-methyl d-aspartate (NMDA) receptors has been implicated in oth...

متن کامل

Sustained Hypoxia Elicits Competing Spinal Mechanisms of Phrenic Motor Facilitation.

UNLABELLED Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF), a form of spinal motor plasticity. Competing mechanisms give rise to phrenic motor facilitation (pMF; a general term including pLTF) depending on the severity of hypoxia within episodes. In contrast, moderate acute sustained hypoxia (mASH) does not elicit pMF. By varying the severity of ASH and targeting ...

متن کامل

Spinal vascular endothelial growth factor induces phrenic motor facilitation via extracellular signal-regulated kinase and Akt signaling.

Although vascular endothelial growth factor (VEGFA-165) is primarily known for its role in angiogenesis, it also plays important neurotrophic and neuroprotective roles for spinal motor neurons. VEGFA-165 signals by activating its receptor tyrosine kinase VEGF receptor-2 (VEGFR-2). Because another growth/trophic factor that signals via a receptor tyrosine kinase (brain derived neurotrophic facto...

متن کامل

Phrenic long-term facilitation after acute intermittent hypoxia requires spinal ERK activation but not TrkB synthesis.

Acute intermittent hypoxia (AIH) elicits a form of spinal respiratory plasticity known as phrenic long-term facilitation (pLTF). pLTF requires spinal serotonin receptor-2 activation, the synthesis of new brain-derived neurotrophic factor (BDNF), and the activation of its high-affinity receptor tyrosine kinase, TrkB. Spinal adenosine 2A receptor activation elicits a distinct pathway to phrenic m...

متن کامل

Spinal NMDA receptor activation constrains inactivity-induced phrenic motor facilitation in Charles River Sprague-Dawley rats.

Reduced spinal synaptic inputs to phrenic motor neurons elicit a unique form of spinal plasticity known as inactivity-induced phrenic motor facilitation (iPMF). iPMF requires tumor necrosis factor-α (TNF-α) and atypical protein kinase C (aPKC) activity within spinal segments containing the phrenic motor nucleus to stabilize early, transient increases in phrenic burst amplitude into long-lasting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 9  شماره 

صفحات  -

تاریخ انتشار 2008